Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441968

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Coração , Fígado/diagnóstico por imagem , Fígado/metabolismo , Isótopos de Carbono/metabolismo
2.
Magn Reson Med ; 91(5): 2153-2161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193310

RESUMO

PURPOSE: Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS: Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS: The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION: Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Abdome/diagnóstico por imagem , Lactatos , Alanina , Isótopos de Carbono/metabolismo
3.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254844

RESUMO

This study aimed to implement a multimodal 1H/HP-13C imaging protocol to augment the serial monitoring of patients with glioma, while simultaneously pursuing methods for improving the robustness of HP-13C metabolic data. A total of 100 1H/HP [1-13C]-pyruvate MR examinations (104 HP-13C datasets) were acquired from 42 patients according to the comprehensive multimodal glioma imaging protocol. Serial data coverage, accuracy of frequency reference, and acquisition delay were evaluated using a mixed-effects model to account for multiple exams per patient. Serial atlas-based HP-13C MRI demonstrated consistency in volumetric coverage measured by inter-exam dice coefficients (0.977 ± 0.008, mean ± SD; four patients/11 exams). The atlas-derived prescription provided significantly improved data quality compared to manually prescribed acquisitions (n = 26/78; p = 0.04). The water-based method for referencing [1-13C]-pyruvate center frequency significantly reduced off-resonance excitation relative to the coil-embedded [13C]-urea phantom (4.1 ± 3.7 Hz vs. 9.9 ± 10.7 Hz; p = 0.0007). Significantly improved capture of tracer inflow was achieved with the 2-s versus 5-s HP-13C MRI acquisition delay (p = 0.007). This study demonstrated the implementation of a comprehensive multimodal 1H/HP-13C MR protocol emphasizing the monitoring of steady-state/dynamic metabolism in patients with glioma.

4.
NMR Biomed ; 37(3): e5074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054254

RESUMO

INTRODUCTION: The healthy heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13 C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13 C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. METHODS: Good manufacturing practice [2-13 C]pyruvic acid was polarized in a 5 T polarizer for 2.5-3 h. Following dissolution, quality control parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5 cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3 s intervals on a 3 T clinical MRI scanner. RESULTS: The study protocol, which included HP substrate injection, MR scanning, and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13 C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13 C]lactate, TCA-associated metabolite [5-13 C]glutamate, and [1-13 C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13 C-labeling of lactate, glutamate, and acetylcarnitine from 13 C-pyruvate increased by an average of 39.3%, 29.5%, and 114% respectively in the three subjects, which could result from increases in lactate dehydrogenase, pyruvate dehydrogenase, and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). CONCLUSIONS: HP [2-13 C]pyruvate imaging is safe and permits noninvasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13 C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.


Assuntos
Miocárdio , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Miocárdio/metabolismo , Glucose/metabolismo , Acetilcarnitina/metabolismo , Miócitos Cardíacos , Ácido Glutâmico/metabolismo , Lactatos/metabolismo , Isótopos de Carbono/metabolismo
5.
Magn Reson Med ; 91(3): 1030-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013217

RESUMO

PURPOSE: This study aimed to quantify T 2 * $$ {T}_2^{\ast } $$ for hyperpolarized [1-13 C]pyruvate and metabolites in the healthy human brain and renal cell carcinoma (RCC) patients at 3 T. METHODS: Dynamic T 2 * $$ {T}_2^{\ast } $$ values were measured with a metabolite-specific multi-echo spiral sequence. The dynamic T 2 * $$ {T}_2^{\ast } $$ of [1-13 C]pyruvate, [1-13 C]lactate, and 13 C-bicarbonate was estimated in regions of interest in the whole brain, sinus vein, gray matter, and white matter in healthy volunteers, as well as in kidney tumors and the contralateral healthy kidneys in a separate group of RCC patients. T 2 * $$ {T}_2^{\ast } $$ was fit using a mono-exponential function; and metabolism was quantified using pyruvate-to-lactate conversion rate maps and lactate-to-pyruvate ratio maps, which were compared with and without an estimated T 2 * $$ {T}_2^{\ast } $$ correction. RESULTS: The T 2 * $$ {T}_2^{\ast } $$ of pyruvate was shown to vary during the acquisition, whereas the T 2 * $$ {T}_2^{\ast } $$ of lactate and bicarbonate were relatively constant through time and across the organs studied. The T 2 * $$ {T}_2^{\ast } $$ of lactate was similar in gray matter (29.75 ± 1.04 ms), white matter (32.89 ± 0.9 ms), healthy kidney (34.61 ± 4.07 ms), and kidney tumor (33.01 ± 2.31 ms); and the T 2 * $$ {T}_2^{\ast } $$ of bicarbonate was different between whole-brain (108.17 ± 14.05 ms) and healthy kidney (58.45 ± 6.63 ms). The T 2 * $$ {T}_2^{\ast } $$ of pyruvate had similar trends in both brain and RCC studies, reducing from 75.56 ± 2.23 ms to 22.24 ± 1.24 ms in the brain and reducing from 122.72 ± 9.86 ms to 57.38 ± 7.65 ms in the kidneys. CONCLUSION: Multi-echo dynamic imaging can quantify T 2 * $$ {T}_2^{\ast } $$ and metabolism in a single integrated acquisition. Clear differences were observed in the T 2 * $$ {T}_2^{\ast } $$ of metabolites and in their behavior throughout the timecourse.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Ácido Pirúvico/metabolismo , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Bicarbonatos/metabolismo , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Lactatos/metabolismo , Isótopos de Carbono/metabolismo
6.
J Magn Reson Imaging ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041836

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related death in the United States. However, early response assessment using the current approach of measuring changes in tumor size on computed tomography (CT) or MRI is challenging. PURPOSE: To investigate the feasibility of hyperpolarized (HP) [1-13 C]pyruvate MRI to quantify metabolism in the normal appearing pancreas and PDA, and to assess changes in PDA metabolism following systemic chemotherapy. STUDY TYPE: Prospective. SUBJECTS: Six patients (65.0 ± 7.6 years, 2 females) with locally advanced or metastatic PDA enrolled prior to starting a new line of systemic chemotherapy. FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted gradient echo, metabolite-selective 13 C echoplanar imaging. ASSESSMENT: Time-resolved HP [1-13 C]pyruvate data were acquired before (N = 6) and 4-weeks after (N = 3) treatment initiation. Pyruvate metabolism, as quantified by pharmacokinetic modeling and metabolite area-under-the-curve ratios, was assessed in manually segmented PDA and normal appearing pancreas ROIs (N = 5). The change in tumor metabolism before and 4-weeks after treatment initiation was assessed in primary PDA (N = 2) and liver metastases (N = 1), and was compared to objective tumor response defined by response evaluation criteria in solid tumors (RECIST) on subsequent CTs. STATISTICAL TESTS: Descriptive tests (mean ± standard deviation), model fit error for pharmacokinetic rate constants. RESULTS: Primary PDA showed reduced alanine-to-lactate ratios when compared to normal pancreas, due to increased lactate-to-pyruvate or reduced alanine-to-pyruvate ratios. Of the three patients who received HP [1-13 C]pyruvate MRI before and 4-weeks after treatment initiation, one patient had a primary tumor with early metabolic response (increase in alanine-to-lactate) and subsequent partial response according to RECIST, one patient had a primary tumor with relatively stable metabolism and subsequent stable disease by RECIST, and one patient had metastatic PDA with increase in lactate-to-pyruvate of the liver metastases and corresponding progressive disease according to RECIST. DATA CONCLUSION: Altered pyruvate metabolism with increased lactate or reduced alanine was observed in the primary tumor. Early metabolic response assessed at 4-weeks after treatment initiation correlated with subsequent objective tumor response assessed using RECIST. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

7.
J Cardiovasc Magn Reson ; 25(1): 77, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093285

RESUMO

BACKGROUND: The heart has metabolic flexibility, which is influenced by fed/fasting states, and pathologies such as myocardial ischemia and hypertrophic cardiomyopathy (HCM). Hyperpolarized (HP) 13C-pyruvate MRI is a promising new tool for non-invasive quantification of myocardial glycolytic and Krebs cycle flux. However, human studies of HP 13C-MRI have yet to demonstrate regional quantification of metabolism, which is important in regional ischemia and HCM patients with asymmetric septal/apical hypertrophy. METHODS: We developed and applied methods for whole-heart imaging of 13C-pyruvate, 13C-lactate and 13C-bicarbonate, following intravenous administration of [1-13C]-pyruvate. The image acquisition used an autonomous scanning method including bolus tracking, real-time magnetic field calibrations and metabolite-specific imaging. For quantification of metabolism, we evaluated 13C metabolite images, ratio metrics, and pharmacokinetic modeling to provide measurements of myocardial lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) mediated metabolic conversion in 5 healthy volunteers (fasting & 30 min following oral glucose load). RESULTS: We demonstrate whole heart coverage for dynamic measurement of pyruvate-to-lactate conversion via LDH and pyruvate-to-bicarbonate conversion via PDH at a resolution of 6 × 6 × 21 mm3 (13C-pyruvate) and 12 × 12 × 21 mm3 (13C-lactate, 13C-bicarbonate). 13C-pyruvate and 13C-lactate were detected simultaneously in the RV blood pool, immediately after intravenous injection, reflecting LDH activity in blood. In healthy volunteers, myocardial 13C-pyruvate-SNR, 13C-lactate-SNR, 13C-bicarbonate-SNR, 13C-lactate/pyruvate ratio, 13C-pyruvate-to-lactate conversion rate, kPL, and 13C-pyruvate-to-bicarbonate conversion rate, kPB, all had statistically significant increases following oral glucose challenge. kPB, reflecting PDH activity and pyruvate entering the Krebs Cycle, had the highest correlation with blood glucose levels and was statistically significant. CONCLUSIONS: We demonstrate first-in-human regional quantifications of cardiac metabolism by HP 13C-pyruvate MRI that aims to reflect LDH and PDH activity.


Assuntos
Bicarbonatos , Ácido Pirúvico , Humanos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Glucose , Ácido Láctico/metabolismo , Isótopos de Carbono
8.
medRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904936

RESUMO

Background: The heart has metabolic flexibility, which is influenced by fed/fasting states, and pathologies such as myocardial ischemia and hypertrophic cardiomyopathy (HCM). Hyperpolarized (HP) 13C-pyruvate MRI is a promising new tool for non-invasive quantification of myocardial glycolytic and Krebs cycle flux. However, human studies of HP 13C-MRI have yet to demonstrate regional quantification of metabolism, which is important in regional ischemia and HCM patients with asymmetric septal/apical hypertrophy. Methods: We developed and applied methods for whole-heart imaging of 13C-pyruvate, 13C-lactate and 13C-bicarbonate, following intravenous administration of [1-13C]-pyruvate. The image acquisition used an autonomous scanning method including bolus tracking, real-time magnetic field calibrations and metabolite-specific imaging. For quantification of metabolism, we evaluated 13C metabolite images, ratio metrics, and pharmacokinetic modeling to provide measurements of myocardial lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) mediated metabolic conversion in 5 healthy volunteers (fasting & 30 min following oral glucose load). Results: We demonstrate whole heart coverage for dynamic measurement of pyruvate-to-lactate conversion via LDH and pyruvate-to-bicarbonate conversion via PDH at a resolution of 6×6×21 mm3 (13C-pyruvate) and 12×12×21 mm3 (13C-lactate, 13C-bicarbonate) . 13C-pyruvate and 13C-lactate were detected simultaneously in the RV blood pool, immediately after intravenous injection, reflecting LDH activity in blood. In healthy volunteers, myocardial 13C-pyruvate-SNR, 13C-lactate-SNR, 13C-bicarbonate-SNR, 13C-lactate/pyruvate ratio, 13C-pyruvate-to-lactate conversion rate, kPL, and 13C-pyruvate-to-bicarbonate conversion rate, kPB, all had statistically significant increases following oral glucose challenge. kPB, reflecting PDH activity and pyruvate entering the Krebs Cycle, had the highest correlation with blood glucose levels and was statistically significant. Conclusions: We demonstrate first-in-human regional quantifications of cardiac metabolism by HP 13C-pyruvate MRI that aims to reflect LDH and PDH activity.

9.
medRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905131

RESUMO

Introduction: The normal heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid (FA) oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. Methods: Good Manufacturing Practice [2-13C]pyruvic acid was polarized in a 5T polarizer for 2.5-3 hours. Following dissolution, QC parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3s intervals on a 3T clinical MRI scanner. Results: The study protocol which included HP substrate injection, MR scanning and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13C]lactate, TCA-associated metabolite [5-13C]glutamate, and [1-13C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13C-labeling of lactate, glutamate, and acetylcarnitine from 13C-pyruvate increased by 39.3%, 29.5%, and 114%, respectively in the three subjects, that could result from increases in lactate dehydrogenase (LDH), pyruvate dehydrogenase (PDH), and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). Conclusions: HP [2-13C]pyruvate imaging is safe and permits non-invasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.

10.
ACS Sens ; 8(11): 4042-4054, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37878761

RESUMO

Solid tumors such as prostate cancer (PCa) commonly develop an acidic microenvironment with pH 6.5-7.2, owing to heterogeneous perfusion, high metabolic activity, and rapid cell proliferation. In preclinical prostate cancer models, disease progression is associated with a decrease in tumor extracellular pH, suggesting that pH imaging may reflect an imaging biomarker to detect aggressive and high-risk disease. Therefore, we developed a hyperpolarized carbon-13 MRI method to image the tumor extracellular pH (pHe) and prepared it for clinical translation for detection and risk stratification of PCa. This method relies on the rapid breakdown of hyperpolarized (HP) 1,2-glycerol carbonate (carbonyl-13C) via base-catalyzed hydrolysis to produce HP 13CO32-, which is neutralized and converted to HP H13CO3-. After injection, HP H13CO3- equilibrates with HP 13CO2 in vivo and enables the imaging of pHe. Using insights gleaned from mechanistic studies performed in the hyperpolarized state, we solved issues of polarization loss during preparation in a clinical polarizer system. We successfully customized a reaction apparatus suitable for clinical application, developed clinical standard operating procedures, and validated the radiofrequency pulse sequence and imaging data acquisition with a wide range of animal models. The results demonstrated that we can routinely produce a highly polarized and safe HP H13CO3- contrast agent suitable for human injection. Preclinical imaging studies validated the reliability and accuracy of measuring acidification in healthy kidney and prostate tumor tissue. These methods were used to support an Investigational New Drug application to the U.S. Food and Drug Administration. This methodology is now ready to be implemented in human trials, with the ultimate goal of improving the management of PCa.


Assuntos
Bicarbonatos , Neoplasias da Próstata , Estados Unidos , Masculino , Animais , Humanos , Bicarbonatos/metabolismo , Reprodutibilidade dos Testes , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Concentração de Íons de Hidrogênio , Microambiente Tumoral
11.
Magn Reson Med ; 90(6): 2233-2241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665726

RESUMO

PURPOSE: To investigate high-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring cerebral perfusion in the human brain. METHODS: HP [1-13 C]pyruvate MRI was acquired in five healthy volunteers with a multi-resolution EPI sequence with 7.5 × 7.5 mm2 resolution for pyruvate. Perfusion parameters were calculated from pyruvate MRI using block-circulant singular value decomposition and compared to relative cerebral blood flow calculated from arterial spin labeling (ASL). To examine regional perfusion patterns, correlations between pyruvate and ASL perfusion were performed for whole brain, gray matter, and white matter voxels. RESULTS: High resolution 7.5 × 7.5 mm2 pyruvate images were used to obtain relative cerebral blood flow (rCBF) values that were significantly positively correlated with ASL rCBF values (r = 0.48, 0.20, 0.28 for whole brain, gray matter, and white matter voxels respectively). Whole brain voxels exhibited the highest correlation between pyruvate and ASL perfusion, and there were distinct regional patterns of relatively high ASL and low pyruvate normalized rCBF found across subjects. CONCLUSION: Acquiring HP 13 C pyruvate metabolic images at higher resolution allows for finer spatial delineation of brain structures and can be used to obtain cerebral perfusion parameters. Pyruvate perfusion parameters were positively correlated to proton ASL perfusion values, indicating a relationship between the two perfusion measures. This HP 13 C study demonstrated that hyperpolarized pyruvate MRI can assess cerebral metabolism and perfusion within the same study.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Perfusão , Marcadores de Spin , Circulação Cerebrovascular
12.
Neuroimage ; 280: 120350, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634883

RESUMO

Hyperpolarized (HP) 13C Magnetic Resonance Imaging (MRI) was applied for the first time to image and quantify the uptake and metabolism of [2-13C]pyruvate in the human brain to provide new metabolic information on cerebral energy metabolism. HP [2-13C]pyruvate was injected intravenously and imaged in 5 healthy human volunteer exams with whole brain coverage in a 1-minute acquisition using a specialized spectral-spatial multi-slice echoplanar imaging (EPI) pulse sequence to acquire 13C-labeled volumetric and dynamic images of [2-13C]pyruvate and downstream metabolites [5-13C]glutamate and [2-13C]lactate. Metabolic ratios and apparent conversion rates of pyruvate-to-lactate (kPL) and pyruvate-to-glutamate (kPG) were quantified to investigate simultaneously glycolytic and oxidative metabolism in a single injection.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Encéfalo/diagnóstico por imagem , Ácido Glutâmico , Ácido Láctico , Imagem Molecular
13.
Neuroimage Clin ; 39: 103501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611371

RESUMO

BACKGROUND: Dynamic hyperpolarized (HP)-13C MRI has enabled real-time, non-invasive assessment of Warburg-related metabolic dysregulation in glioma using a [1-13C]pyruvate tracer that undergoes conversion to [1-13C]lactate and [13C]bicarbonate. Using a multi-parametric 1H/HP-13C imaging approach, we investigated dynamic and steady-state metabolism, together with physiological parameters, in high-grade gliomas to characterize active tumor. METHODS: Multi-parametric 1H/HP-13C MRI data were acquired from fifteen patients with progressive/treatment-naïve glioblastoma [prog/TN GBM, IDH-wildtype (n = 11)], progressive astrocytoma, IDH-mutant, grade 4 (G4AIDH+, n = 2) and GBM manifesting treatment effects (n = 2). Voxel-wise regional analysis of the cohort with prog/TN GBM assessed imaging heterogeneity across contrast-enhancing/non-enhancing lesions (CEL/NEL) and normal-appearing white matter (NAWM) using a mixed effects model. To enable cross-nucleus parameter association, normalized perfusion, diffusion, and dynamic/steady-state (HP-13C/spectroscopic) metabolic data were collectively examined at the 13C resolution. Prog/TN GBM were similarly compared against progressive G4AIDH+ and treatment effects. RESULTS: Regional analysis of Prog/TN GBM metabolism revealed statistically significant heterogeneity in 1H choline-to-N-acetylaspartate index (CNI)max, [1-13C]lactate, modified [1-13C]lactate-to-[1-13C]pyruvate ratio (CELval > NELval > NAWMval); [1-13C]lactate-to-[13C]bicarbonate ratio (CELval > NELval/NAWMval); and 1H-lactate (CELval/NELval > NAWMundetected). Significant associations were found between normalized perfusion (cerebral blood volume, nCBV; peak height, nPH) and levels of [1-13C]pyruvate and [1-13C]lactate, as well as between CNImax and levels of [1-13C]pyruvate, [1-13C]lactate and modified ratio. GBM, by comparison to G4AIDH+, displayed lower perfusion %-recovery and modeled rate constants for [1-13C]pyruvate-to-[1-13C]lactate conversion (kPL), and higher 1H-lactate and [1-13C]pyruvate levels, while having higher nCBV, %-recovery, kPL, [1-13C]pyruvate-to-[1-13C]lactate and modified ratios relative to treatment effects. CONCLUSIONS: GBM consistently displayed aberrant, Warburg-related metabolism and regional heterogeneity detectable by novel HP-13C/1H imaging techniques.


Assuntos
Glioblastoma , Glioma , Humanos , Bicarbonatos , Glioma/diagnóstico por imagem , Ácido Láctico , Glioblastoma/diagnóstico por imagem , Ácido Pirúvico
14.
Magn Reson Med ; 90(6): 2539-2556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526128

RESUMO

PURPOSE: X-nuclei (also called non-proton MRI) MRI and spectroscopy are limited by the intrinsic low SNR as compared to conventional proton imaging. Clinical translation of x-nuclei examination warrants the need of a robust and versatile tool improving image quality for diagnostic use. In this work, we compare a novel denoising method with fewer inputs to the current state-of-the-art denoising method. METHODS: Denoising approaches were compared on human acquisitions of sodium (23 Na) brain, deuterium (2 H) brain, carbon (13 C) heart and brain, and simulated dynamic hyperpolarized 13 C brain scans, with and without additional noise. The current state-of-the-art denoising method Global-local higher order singular value decomposition (GL-HOSVD) was compared to the few-input method tensor Marchenko-Pastur principal component analysis (tMPPCA). Noise-removal was quantified by residual distributions, and statistical analyses evaluated the differences in mean-square-error and Bland-Altman analysis to quantify agreement between original and denoised results of noise-added data. RESULTS: GL-HOSVD and tMPPCA showed similar performance for the variety of x-nuclei data analyzed in this work, with tMPPCA removing ˜5% more noise on average over GL-HOSVD. The mean ratio between noise-added and denoising reproducibility coefficients of the Bland-Altman analysis when compared to the original are also similar for the two methods with 3.09 ± 1.03 and 2.83 ± 0.79 for GL-HOSVD and tMPPCA, respectively. CONCLUSION: The strength of tMPPCA lies in the few-input approach, which generalizes well to different data sources. This makes the use of tMPPCA denoising a robust and versatile tool in x-nuclei imaging improvements and the preferred denoising method.

15.
J Magn Reson ; 353: 107518, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402333

RESUMO

13C-bicarbonate is a crucial measure of pyruvate oxidation and TCA cycle flux, but is challenging to measure due to its relatively low concentration and thus will greatly benefit from improved signal-to-noise ratio (SNR). To address this, we developed and investigated the feasibility of a 3D stack-of-spirals metabolite-specific balanced steady-state free precession (MS-bSSFP) sequence for improving the SNR and spatial resolution of dynamic 13C-bicarbonate imaging in hyperpolarized [1-13C]pyruvate studies. The bicarbonate MS-bSSFP sequence was evaluated by simulations, phantoms studies, preclinical studies on five rats, brain studies on two healthy volunteers and renal study on one renal cell carcinoma patient. The simulations and phantom results showed that the bicarbonate-specific pulse had minimal perturbation of other metabolites (<1%). In the animal studies, the MS-bSSFP sequence provided an approximately 2.6-3 × improvement in 13C-bicarbonate SNR compared to a metabolite-specific gradient echo (MS-GRE) sequence without altering the bicarbonate or pyruvate kinetics, and the shorter spiral readout in the MS-bSSFP approach reduced blurring. Using the SNR ratio between MS-bSSFP and MS-GRE, the T2 values of bicarbonate and lactate in the rat kidneys were estimated as 0.5 s and 1.1 s, respectively. The in-vivo feasibility of bicarbonate MS-bSSFP sequence was demonstrated in two human brain studies and one renal study. These studies demonstrate the potential of the sequence for in-vivo applications, laying the foundation for future studies to observe this relatively low concentration metabolite with high-quality images and improve measurements of pyruvate oxidation.


Assuntos
Bicarbonatos , Ácido Pirúvico , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Encéfalo , Imagens de Fantasmas
16.
Tomography ; 9(2): 736-749, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37104130

RESUMO

Metabolite-specific echo-planar imaging (EPI) sequences with spectral-spatial (spsp) excitation are commonly used in clinical hyperpolarized [1-13C]pyruvate studies because of their speed, efficiency, and flexibility. In contrast, preclinical systems typically rely on slower spectroscopic methods, such as chemical shift imaging (CSI). In this study, a 2D spspEPI sequence was developed for use on a preclinical 3T Bruker system and tested on in vivo mice experiments with patient-derived xenograft renal cell carcinoma (RCC) or prostate cancer tissues implanted in the kidney or liver. Compared to spspEPI sequences, CSI were found to have a broader point spread function via simulations and exhibited signal bleeding between vasculature and tumors in vivo. Parameters for the spspEPI sequence were optimized using simulations and verified with in vivo data. The expected lactate SNR and pharmacokinetic modeling accuracy increased with lower pyruvate flip angles (less than 15°), intermediate lactate flip angles (25° to 40°), and temporal resolution of 3 s. Overall SNR was also higher with coarser spatial resolution (4 mm isotropic vs. 2 mm isotropic). Pharmacokinetic modelling used to fit kPL maps showed results consistent with the previous literature and across different sequences and tumor xenografts. This work describes and justifies the pulse design and parameter choices for preclinical spspEPI hyperpolarized 13C-pyruvate studies and shows superior image quality to CSI.


Assuntos
Imagem Ecoplanar , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Imagem Ecoplanar/métodos , Ácido Pirúvico , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Ácido Láctico
17.
Magn Reson Imaging ; 100: 102-111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36934830

RESUMO

The non-uniform Discrete Fourier Transform algorithm has shown great utility for reconstructing images from non-uniformly spaced Fourier samples in several imaging modalities. Due to the non-uniform spacing, some correction for the variable density of the samples must be made. Common methods for generating density compensation values are either sub-optimal or only consider a finite set of points in the optimization. This manuscript presents an algorithm for generating density compensation values from a set of Fourier samples that takes into account the point spread function over an entire rectangular region in the image domain. We show that the reconstructed images using the density compensation values of this method are of superior quality when compared to other standard methods. Results are shown with a numerical phantom and with magnetic resonance images of the abdomen and the knee.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Abdome , Imageamento por Ressonância Magnética/métodos , Análise de Fourier , Imagens de Fantasmas
18.
Clin Exp Dermatol ; 48(7): 733-743, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36970766

RESUMO

A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.


Assuntos
Diabetes Mellitus , Hipertensão , Animais , Humanos , Masculino , Sódio , Pele , Preparações Farmacêuticas
19.
Magn Reson Med ; 89(4): 1481-1495, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36468638

RESUMO

PURPOSE: Model-constrained reconstruction with Fourier-based undersampling (MoReFUn) is introduced to accelerate the acquisition of dynamic MRI using hyperpolarized [1-13 C]-pyruvate. METHODS: The MoReFUn method resolves spatial aliasing using constraints introduced by a pharmacokinetic model that describes the signal evolution of both pyruvate and lactate. Acceleration was evaluated on three single-channel data sets: a numerical digital phantom that is used to validate the accuracy of reconstruction and model parameter restoration under various SNR and undersampling ratios, prospectively and retrospectively sampled data of an in vitro dynamic multispectral phantom, and retrospectively undersampled imaging data from a prostate cancer patient to test the fidelity of reconstructed metabolite time series. RESULTS: All three data sets showed successful reconstruction using MoReFUn. In simulation and retrospective phantom data, the restored time series of pyruvate and lactate maintained the image details, and the mean square residual error of the accelerated reconstruction increased only slightly (< 10%) at a reduction factor up to 8. In prostate data, the quantitative estimation of the conversion-rate constant of pyruvate to lactate was achieved with high accuracy of less than 10% error at a reduction factor of 2 compared with the conversion rate derived from unaccelerated data. CONCLUSION: The MoReFUn technique can be used as an effective and reliable imaging acceleration method for metabolic imaging using hyperpolarized [1-13 C]-pyruvate.


Assuntos
Neoplasias da Próstata , Ácido Pirúvico , Masculino , Humanos , Ácido Pirúvico/metabolismo , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Imagens de Fantasmas , Lactatos
20.
Magn Reson Med ; 88(6): 2609-2620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35975978

RESUMO

PURPOSE: To develop techniques and establish a workflow using hyperpolarized carbon-13 (13 C) MRI and the pyruvate-to-lactate conversion rate (kPL ) biomarker to guide MR-transrectal ultrasound fusion prostate biopsies. METHODS: The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min hyperpolarized 13 C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps of kPL values were calculated, uploaded to a picture archiving and communication system and targeting platform, and displayed as color overlays on T2 -weighted anatomic images. Abdominal radiologists identified 13 C research biopsy targets based on the general recommendation of focal lesions with kPL >0.02(s-1 ), and created a targeting report for each study. Urologists conducted transrectal ultrasound-guided MR fusion biopsies, including the standard 1 H-mpMRI targets as well as 12-14 core systematic biopsies informed by the research 13 C-kPL targets. All biopsy results were included in the final pathology report and calculated toward clinical risk. RESULTS: This study demonstrated the safety and technical feasibility of integrating hyperpolarized 13 C metabolic targeting into routine 1 H-mpMRI and transrectal ultrasound fusion biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 3 days from scan to 13 C-kPL targeting, and scan-to-biopsy time was 2 weeks. Median number of 13 C targets was 1 (range: 1-2) per patient, measuring 1.0 cm (range: 0.6-1.9) in diameter, with a median kPL of 0.0319 s-1 (range: 0.0198-0.0410). CONCLUSIONS: This proof-of-concept work demonstrated the safety and feasibility of integrating hyperpolarized 13 C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal ultrasound fusion biopsies.


Assuntos
Próstata , Neoplasias da Próstata , Idoso , Humanos , Biópsia Guiada por Imagem/métodos , Lactatos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Próstata/diagnóstico por imagem , Próstata/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Ácido Pirúvico , Ultrassonografia de Intervenção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...